Dummy
- class sklego.dummy.RandomRegressor(strategy='uniform', random_state=None)[source]
Bases:
sklearn.base.BaseEstimator
,sklearn.base.RegressorMixin
A RandomRegressor makes random predictions only based on the “y” value that is seen. The goal is that such a regressor can be used for benchmarking. It should be easily beatable.
- Parameters
strategy (str) – how we want to select random values, can be “uniform” or “normal”
seed (int) – the seed value, default: 42
- fit(X: numpy.array, y: numpy.array) sklego.dummy.RandomRegressor [source]
Fit the model using X, y as training data.
- Parameters
X – array-like, shape=(n_columns, n_samples,) training data.
y – array-like, shape=(n_samples,) training data.
- Returns
Returns an instance of self.