Source code for sklego.model_selection

import numbers
from datetime import timedelta
from itertools import combinations
from warnings import warn

import numpy as np
import pandas as pd
from sklearn.exceptions import NotFittedError
from sklearn.model_selection._split import _BaseKFold, check_array
from sklearn.utils.validation import indexable

from sklego.base import Clusterer
from sklego.common import sliding_window


[docs]class TimeGapSplit: """ Provides train/test indices to split time series data samples. This cross-validation object is a variation of TimeSeriesSplit with the following differences: - The splits are made based on datetime duration, instead of number of rows. - The user specifies the validation durations and either training_duration or n_splits - The user can specify a 'gap' duration that is added after the training split and before the validation split The 3 duration parameters can be used to really replicate how the model is going to be used in production in batch learning. Each validation fold doesn't overlap. The entire 'window' moves by 1 valid_duration until there is not enough data. If this would lead to more splits then specified with n_splits, the 'window' moves by the validation_duration times the fraction of possible splits and requested splits -- n_possible_splits = (total_length-train_duration-gap_duration)//valid_duration -- time_shift = valid_duration n_possible_splits/n_slits so the CV spans the whole dataset. If train_duration is not passed but n_split is, the training duration is increased to -- train_duration = total_length-(self.gap_duration + self.valid_duration * self.n_splits) such that the shifting the entire window by one validation duration spans the whole training set :param pandas.Series date_serie: Series with the date, that should have all the indices of X used in split() :param datetime.timedelta train_duration: historical training data. :param datetime.timedelta valid_duration: retraining period. :param datetime.timedelta gap_duration: forward looking window of the target. The period of the forward looking window necessary to create your target variable. This period is dropped at the end of your training folds due to lack of recent data. In production you would have not been able to create the target for that period, and you would have drop it from the training data. :param int n_splits: number of splits :param string window: 'rolling' window has fixed size and is shifted entirely 'expanding' left side of window is fixed, right border increases each fold """ def __init__( self, date_serie, valid_duration, train_duration=None, gap_duration=timedelta(0), n_splits=None, window="rolling", ): if (train_duration is None) and (n_splits is None): raise ValueError( "Either train_duration or n_splits have to be defined" ) if (train_duration is not None) and (train_duration <= gap_duration): raise ValueError( "gap_duration is longer than train_duration, it should be shorter." ) if not date_serie.index.is_unique: raise ValueError("date_serie doesn't have a unique index") self.date_serie = date_serie.copy() self.date_serie = self.date_serie.rename("__date__") self.train_duration = train_duration self.valid_duration = valid_duration self.gap_duration = gap_duration self.n_splits = n_splits self.window = window def _join_date_and_x(self, X): """ Make a DataFrame indexed by the pandas index (the same as date_series) with date column joined with that index and with the 'numpy index' column (i.e. just a range) that is required for the output and the rest of sklearn :param pandas.DataFrame X: """ X_index_df = pd.DataFrame( range(len(X)), columns=["np_index"], index=X.index ) X_index_df = X_index_df.join(self.date_serie) return X_index_df
[docs] def split(self, X, y=None, groups=None): """ Generate indices to split data into training and test set. :param pandas.DataFrame X: :param y: Always ignored, exists for compatibility :param groups: Always ignored, exists for compatibility """ X_index_df = self._join_date_and_x(X) X_index_df = X_index_df.sort_values("__date__", ascending=True) if len(X) != len(X_index_df): raise AssertionError( "X and X_index_df are not the same length, " "there must be some index missing in 'self.date_serie'" ) date_min = X_index_df["__date__"].min() date_max = X_index_df["__date__"].max() date_length = ( X_index_df["__date__"].max() - X_index_df["__date__"].min() ) if (self.train_duration is None) and (self.n_splits is not None): self.train_duration = date_length - ( self.gap_duration + self.valid_duration * self.n_splits ) if (self.train_duration is not None) and ( self.train_duration <= self.gap_duration ): raise ValueError( "gap_duration is longer than train_duration, it should be shorter." ) n_split_max = ( date_length - self.train_duration - self.gap_duration ) / self.valid_duration if self.n_splits: if n_split_max < self.n_splits: raise ValueError( ( "Number of folds requested = {1} are greater" " than maximum ={0} possible without" " overlapping validation sets." ).format(n_split_max, self.n_splits) ) current_date = date_min start_date = date_min # if the n_splits is smaller than what would usually be done for train val and gap duration, # the next fold is slightly further in time than just valid_duration if self.n_splits is not None: time_shift = self.valid_duration * n_split_max / self.n_splits else: time_shift = self.valid_duration while True: if ( current_date + self.train_duration + time_shift + self.gap_duration > date_max ): break X_train_df = X_index_df[ (X_index_df["__date__"] >= start_date) & (X_index_df["__date__"] < current_date + self.train_duration) ] X_valid_df = X_index_df[ ( X_index_df["__date__"] >= current_date + self.train_duration + self.gap_duration ) & ( X_index_df["__date__"] < current_date + self.train_duration + self.valid_duration + self.gap_duration ) ] current_date = current_date + time_shift if self.window == "rolling": start_date = current_date yield ( X_train_df["np_index"].values, X_valid_df["np_index"].values, )
[docs] def get_n_splits(self, X=None, y=None, groups=None): return sum(1 for x in self.split(X, y, groups))
[docs] def summary(self, X): """ Describe all folds :param pandas.DataFrame X: :returns: ``pd.DataFrame`` summary of all folds """ summary = [] X_index_df = self._join_date_and_x(X) def get_split_info(X, indices, j, part, summary): dates = X_index_df.iloc[indices]["__date__"] mindate = dates.min() maxdate = dates.max() s = pd.Series( { "Start date": mindate, "End date": maxdate, "Period": pd.to_datetime(maxdate, format="%Y%m%d") - pd.to_datetime(mindate, format="%Y%m%d"), "Unique days": len(dates.unique()), "nbr samples": len(indices), }, name=(j, part), ) summary.append(s) return summary j = 0 for i in self.split(X): summary = get_split_info(X, i[0], j, "train", summary) summary = get_split_info(X, i[1], j, "valid", summary) j = j + 1 return pd.DataFrame(summary)
[docs]class KlusterFoldValidation: """ KlusterFold cross validator - Create folds based on provided cluster method :param cluster_method: Clustering method with fit_predict attribute """ def __init__(self, cluster_method=None): if not isinstance(cluster_method, Clusterer): raise ValueError( "The KlusterFoldValidation only works on cluster methods with .fit_predict." ) self.cluster_method = cluster_method self.n_splits = None
[docs] def split(self, X, y=None, groups=None): """ Generator to iterate over the indices :param X: Array to split on :param y: Always ignored, exists for compatibility :param groups: Always ignored, exists for compatibility """ X = check_array(X) if not self._method_is_fitted(X): self.cluster_method.fit(X) clusters = self.cluster_method.predict(X) self.n_splits = len(np.unique(clusters)) if self.n_splits < 2: raise ValueError( f"Clustering method resulted in {self.n_splits} cluster, too few for fold validation" ) for label in np.unique(clusters): yield ( np.where(clusters != label)[0], np.where(clusters == label)[0], )
def _method_is_fitted(self, X): """ :param X: Array to use if the method is fitted :return: True if fitted, else False """ try: self.cluster_method.predict(X[0:1, :]) return True except NotFittedError: return False
[docs]class GroupTimeSeriesSplit(_BaseKFold): """ Sliding window time series split Create n_splits folds with an as equally possible size through a smart variant of a brute force search. Groups parameter in .split() should be filled with the time groups (e.g. years) :param n_splits: the amount of train-test combinations. :type n_splits: int with n_splits at 3 * = train x = test |-----------------------| | * * * x x x - - - - - | | - - - * * * x x x - - | | - - - - - - * * * x x | |-----------------------| """ # table above inspired by sktime def __init__(self, n_splits): if not isinstance(n_splits, numbers.Integral): raise ValueError( "The number of folds must be of Integral type. " "%s of type %s was passed." % (n_splits, type(n_splits)) ) n_splits = int(n_splits) if n_splits <= 1: raise ValueError( "k-fold cross-validation requires at least one" " train/test split by setting n_splits=2 or more," " got n_splits={0}.".format(n_splits) ) self.n_splits = n_splits
[docs] def summary(self): """ Generates a pd.DataFrame which displays the groups splits and extra statistics about it. Can only be run after having applied the .split() method to the GroupTimeSeriesSplit instance. :return: a pd.DataFrame with info about where the splits were made :rtype: pd.DataFrame """ try: return ( self._grouped_df.sort_index() .assign(group=lambda df: df["group"].astype(int)) .assign( obs_per_group=lambda df: df.groupby("group")[ "observations" ].transform("sum") ) .assign(ideal_group_size=round(self._ideal_group_size)) .assign( diff_from_ideal_group_size=lambda df: df["obs_per_group"] - df["ideal_group_size"] ) ) except AttributeError: raise AttributeError( ".summary() only works after having ran" " .split(X, y, groups)." )
[docs] def split(self, X=None, y=None, groups=None): """Returns the train-test splits of all the folds :param X: array-like of shape (n_samples, n_features) Training data, where `n_samples` is the number of samples and `n_features` is the number of features., defaults to None :type X: np.array, optional :param y: array-like of shape (n_samples,) The target variable for supervised learning problems, defaults to None :type y: np.array, optional :param groups: Group labels for the samples used while splitting the dataset into train/test set, defaults to None :type groups: np.array :return: the indices of the train and test splits :rtype: List[np.array] """ if groups is None: raise ValueError("Groups cannot be None") X, y, groups = indexable(X, y, groups) n_groups = np.unique(groups).shape[0] if self.n_splits >= n_groups: raise ValueError( ( "n_splits({0}) must be less than the amount" " of unique groups({1})." ).format(self.n_splits, n_groups) ) return list(self._iter_test_indices(X, y, groups))
[docs] def get_n_splits(self, X=None, y=None, groups=None): """Get the amount of splits :param X: Always ignored, exists for compatibality, defaults to None :type X: Object, optional :param y: Always ignored, exists for compatibality, defaults to None :type y: Object, optional :param groups: Always ignored, exists for compatibality, defaults to None :type groups: Object, optional :return: amount of n_splits :rtype: int """ return self.n_splits
def _check_for_long_estimated_runtime(self, groups): """ Checks for combinations of n_splits and unique groups and raises UserWarning if runtime is expected to take over one minute :param groups: array of the groups :type groups: np.array """ unique_groups = len(set(groups)) warning = ( "Finding the optimal split points" " with {0} unique groups and n_splits at {1}" " can take several minutes." ).format(unique_groups, self.n_splits) if self.n_splits == 4 and unique_groups > 250: warn( warning + " Consider to decrease n_splits to 3 or lower.", UserWarning, ) elif self.n_splits == 5 and unique_groups > 100: warn( warning + " Consider to decrease n_splits to 4 or lower.", UserWarning, ) elif self.n_splits > 5 and unique_groups > 30: warn( warning + " Consider to decrease n_splits to 5 or lower.", UserWarning, ) def _iter_test_indices(self, X=None, y=None, groups=None): """ Calculates the optimal division of groups into folds so that every fold is as equally large as possible :param X: Always ignored, exists for compatibility. :param y: Always ignored, exists for compatibility. :param groups: array with groups :type groups: np.array :yields: two numpy arrays -> train indices and test indices of the same fold """ self._check_for_long_estimated_runtime(groups) ( self._first_split_index, self._last_split_index, ) = self._calc_first_and_last_split_index(groups=groups) self._best_splits = self._get_split_indices() groups = self._regroup(groups) for i in range(self.n_splits): yield np.where(groups == i)[0], np.where(groups == i + 1)[0] def _calc_first_and_last_split_index(self, X=None, y=None, groups=None): """ Calculates an approximate first and last split point to reduce the amount of options during a brute force search. :param X: Always ignored, exists for compatibility. :param y: Always ignored, exists for compatibility. :param groups: array with groups :type groups: np.array :return: approximate index of first and approx. index of last split :rtype: tuple """ # get the counts (=amount of rows) for each group self._grouped_df = ( pd.DataFrame(np.array(groups)) .rename(columns={0: "index"}) .groupby("index") .size() .sort_index() .to_frame() .rename(columns={0: "observations"}) ) # set the ideal group_size and reduce it to 90% to have some leverage self._ideal_group_size = np.sum(self._grouped_df["observations"]) / ( self.n_splits + 1 ) init_ideal_group_size = self._ideal_group_size * 0.9 # initalize the index of the first split, to reduce the amount of possible index split options first_split_index = ( self._grouped_df.assign( cumsum_obs=lambda df: df["observations"].cumsum() ) .assign( group_id=lambda df: (df["cumsum_obs"] - 1) // init_ideal_group_size ) .reset_index() .loc[lambda df: df["group_id"] != 0] .iloc[0] .name ) # initalize the index of the last split point, to reduce the amount of possible index split options last_split_index = len(self._grouped_df) - ( self._grouped_df.assign( observations=lambda df: df["observations"].values[::-1], cumsum_obs=lambda df: df["observations"].cumsum(), ) .reset_index() .assign( group_id=lambda df: (df["cumsum_obs"] - 1) // init_ideal_group_size ) .loc[lambda df: df["group_id"] != 0] .iloc[0] .name - 1 ) return first_split_index, last_split_index def _get_split_indices(self): """ Calculates for each possible splits the total absolute different of the groups to the ideal group size and saves the split with the least absolute difference. :return: indices of the best split points :rtype: tuple """ # set the index range to search possible splits for index_range = range(self._first_split_index, self._last_split_index) observations = self._grouped_df["observations"].tolist() # create generator with all the possible index splits # e.g. for [0, 1, 3, 5, 8] and self.n_splits = 2 # [(1,2), (1,3), (1,4), (2,3), (2,4), (3,4)] # with for the first split: # group1 = [:1] # group2 = [1:2] # group3 = [2:] splits_generator_shifted = combinations(index_range, self.n_splits) # get the first iteration first_splits = next(splits_generator_shifted) # create a new generator that starts from the beginning again splits_generator = combinations(index_range, self.n_splits) # generate a list, with for every group the difference between them and the ideal group size # e.g. # ideal_group_size = 100 # group_sizes = [10,20,270] # diff_from_ideal_list = [-90, -80, 170] diff_from_ideal_list = [ sum(observations[: first_splits[0]]) - self._ideal_group_size ] for split in sliding_window(first_splits, window_size=2, step_size=1): try: diff_from_ideal_list += [ sum(observations[split[0] : split[1]]) - self._ideal_group_size ] except IndexError: diff_from_ideal_list += [ sum(observations[split[0] :]) - self._ideal_group_size ] # keep track of the minimum of the total difference from all groups to the ideal group size min_diff = sum([abs(diff) for diff in diff_from_ideal_list]) best_splits = first_splits # loop through all possible split points and check whether a new split # has a less total difference from all groups to the ideal group size for prev_splits, new_splits in zip( splits_generator, splits_generator_shifted ): diff_from_ideal_list = self._calc_new_diffs( observations, diff_from_ideal_list, prev_splits, new_splits ) new_diff = sum([abs(diff) for diff in diff_from_ideal_list]) # if with the new split the difference is less than the current most optimal, save the # new split if new_diff < min_diff: min_diff = new_diff best_splits = new_splits return best_splits @staticmethod def _calc_new_diffs(values, diff_list, prev_splits, new_splits): """Calculates the new group size differences compared to the optimal group size :param values: list of values :type values: list :param diff_list: list of values with for each index split its difference from the optimal group size :type diff_list: list :param prev_splits: the indices of the previous splits, excluding index 0 and the last index :type prev_splits: tuple :param new_splits: the indices of the new splits, excluding index 0 and the last index :type new_splits: tuple :return: updated diff_list :rtype: list """ # calculate which indices have changed, e.g.: # new_index = (1,2,5) # prev_index = (1,2,4) # index_diffs = (0,0,1) index_diffs = [ new_index - prev_index for prev_index, new_index in zip(prev_splits, new_splits) ] new_diff_list = diff_list.copy() # calculate the effects of the index change to the groups for index, diff in enumerate(index_diffs): if diff != 0: start_index, end_index = ( (prev_splits[index], new_splits[index]) if prev_splits[index] < new_splits[index] else (new_splits[index], prev_splits[index]) ) # calculate the value change from one group to another value_change = sum(values[start_index:end_index]) # if diff < 0 the previous group gains values, so change value_change to -value_change value_change = value_change if diff > 0 else -value_change # change the values of the current and next group new_diff_list[index] += value_change new_diff_list[index + 1] -= value_change return new_diff_list def _regroup(self, groups): """ Specifies in which group every observation belongs :param groups: orginal groups in array :type: groups: np.array :return: indices for the train and test splits of each fold :rtype: np.array """ df = self._grouped_df.copy().reset_index() # set each unique group to the right group_id to group them into folds df.loc[: self._best_splits[0], "group"] = 0 for group_id, splits in enumerate( sliding_window(self._best_splits, 2, 1) ): try: df.loc[splits[0] : splits[1], "group"] = group_id + 1 except IndexError: df.loc[splits[0] :, "group"] = group_id + 1 self._grouped_df = df # create a mapper to set every group to the right group_id mapper = dict(zip(df["index"], df["group"])) return np.vectorize(mapper.get)(groups) def _method_is_fitted(self, X): """ :param X: Array to use if the method is fitted :return: True if fitted, else False """ try: self.cluster_method.predict(X[0:1, :]) return True except NotFittedError: return False